
Homework 8

1. The following code will create a function to simulate a Poisson process

poissonsim=function(lambda=1,T){
x=c(0, 0) # set initial values to X(0)=0 and time=0
dim(x)=c(2,1) #set dimensions of the above
t=0 #set time to zero
i=1 #keep track of number of events
while (t<T){
i=i+1 #add one event
interarrival=rexp(1,rate=lambda) #simulate interarrival time
nextstate=x[1,i-1]+1 #process increases by one
t=t+interarrival #increase the current time
x=cbind(x,c(nextstate,t)) #add the new X(t) and new time
}
x # return a matrix with 2 rows and number of columns corresponding to
number of events

}

This can be called with x=poissonsim(2,10). This will store a matrix
of two rows. The first row is the value of the process, and the second
row is the time when the event occurred. You may plot the process
with

plot(x[2,], x[1,], type="s",xlim=c(0,10))

(Note that you can obtain the values of the process using x[1,] and
the times with x[2,].

Now note that you may generate a Poisson random variable with mean
of 2 using the command

N=rpois(1,2)

1

and you can generate any number of uniform random variables using
the runif() command. For instance, to generate 30 uniform random
variables from 0 to 2 would be

y=runif(30,0,2)

Use these facts to simulate a Poisson process using a method other
than poissonsim(). To check whether two distributions are the same,
one can use a qq plot. In R, this can be done with the command
qqplot(x,y) if x and y contain the two samples you wish to compare.
Check whether the process using this second method and the process
from poissonsim() are the same. Use lambda=2 and time up to 20.

2. The following code will simulate a single server queue

ssqueue=function(lambda=1, mu=1, T){
x=c(0,0) #set the initial values--the first is X(0) the second is time.
dim(x)=c(2,1) #set the dimentsion
t=0 #set time to zero
i=1 #keep track of number of events
while (t<T){

i=i+1 # add one event

if (x[1,i-1]==0) #if current state is zero--can only move up
{interarrival=rexp(1,rate=lambda) #simulate interarrival

nextstate=1}
else { #current state is not zero

interarrival=rexp(1,rate=(lambda+mu)) #simulate interarrival
if (rbinom(1,1,lambda/(lambda+mu))==1) # generates bernoulli random var
#to decide up or down
{nextstate=x[1,i-1]+1} #move up
else
{nextstate=x[1,i-1]-1} #move down
}
t=t+interarrival #update current time
x=cbind(x,c(nextstate,t)) #add the new X(t) and new time
}
x # return a matrix with 2 rows and number of columns corresponding to
number of events

}

2

You may call the function using x=ssqueue(1,2,20) to generate a
single server queue up to time 20 with λ = 1 and µ = 2. You can
use the same command as for the Poisson process to plot the path.
Generate several plots including ones with λ greater than, less than,
and equal to µ.

Also, verify that the mean of the stationary distribution is 1−λ/µ
λ/µ and

variance is 1−λ/µ
(λ/µ)2

using simulation. To do this it may be helpful to use
a for loop. To do this in R, use

for (i in 1:100){
insert commands here
}

3. Modify the code for a single server queue to simulate a birth/death
process. Simulate examples with λ greater than, less than, or equal
to µ. Show plots and discuss them in the context of the mean of this
process given in class. (Note: To get reasonable results, you will need
to reset the initial value for the process to something other than zero.)

3

